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Abstract. A theoretical study of self-similar detonations is undertaken in the case that the 
shock is propagating into a medium whose density varies by an algebraic power law. The 
non-constant density case permits the inclusion of Arrhenius and depletion factors in the 
reaction rate funaion. Special solutions are obtained that illustrate the nature ofthe singular 
locus, found even in the constant density case, and a necessary condition for the solution 
to intersect the singular locus is given in terms of the action of the piston. We are able to 
identify the appearance of the singular locus with an underdriven detonation that goes to 
failure in one of the special solutions, and in general with a reaction that does not go to 
completion, 

1. Introduction 

We consider the motion of a strong, planar shock wave moving into a one-dimensional 
reactive medium and initiating a chemical reaction that takes place behind the shock. 
The gas-dynamic flow of the chemical mixture behind the shock is described by the 
ZND (Zel’dovich-von Neumann-Doering) model that consists of the adiabatic, inviscid, 
one-dimensional fluid equations, plus constitutive relations for the equation of state 
and a rate equation governing the evolution of the chemical species. Self-similar 
solutions to the problem of describing this time-dependent reactive flow have been 
studied by several authors in the case that the density ahead of the shock is constant. 
See, for example, Sternberg (1970). Cowperthwaite (1979), Logan and Wrez (1980), 
Holm and Logan (1983) and Logan and Woemer (1989). One difficulty with all these 
studies is that the class of self-similar solutions does not include the case when the 
reaction rate contains either simple depletion or Arrehnius factors. In fact, it is shown 
in Logan and PCrez (1980) (also see Rogers and Ames 1989) that a necessary condition 
for self-similar motions to exist is that the reaction rate function governing the irrevers- 
ible, exothermic chemical reaction A +  B must have the form r = p a F ( p ,  Afp ) ,  where 
p is pressure, p is the density, A is the mass fraction of the product species B, p is a 
constant and F is an arbitrary function. The case examined most often is the case that 
r = a p / p  ( p  = 1 and F =  a f p, a a constant), where the rate is proportional to the 
internal energy. 

If one considers a shock propagating into a medium with non-constant density, 
however, one does not have to abandon Arrhenius kinetics and depletion factors to 
obtain self-similar motions of the reactive flow. The study of some these solutions is 
the content of this work. We classify all reaction rates and density distributions under 
which the governing equations and strong shock conditions admit self-similar solutions 
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in the variable density case. In non-reactive media, self-similar solutions in the variable 
density case have been investigated by Sedov (1959) and Korobeinikov (1973). 

In one special case an exact, analytic solution is found when the density is increasing 
ahead of a constant velocity shock. In a decreasing density case, under a special 
assumption, the problem is reduced to a single integration. These special solutions 
provide insights into the nature of the singular locus that is present in some self-similar 
detonations, a behaviour noticed by earlier authors in the constant density case. Bounds 

not to go to completion is given. In the last section some numerical results are presented 
to illustrate the various cases. For one of the special solutions we are able to identify 
the presence of the singular locus with an underdriven detonation that leads to failure. 

E L Woerner and J D Logan 
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2. Self-similar solutions 

At time f =  0 a piston located at f = 0 moves forward with initial velocity ui into a 
one-dimensional reactive medium occupying f > 0 and having density p,(f), f P 0. 
The motion of the piston generates a strong shock with speed o( t) > 0, which in turn 
initiates an irreversible, exothermic chemical ieaction A -f B which then supplies energy 
to the flow behind the shock; no reaction is assumed to occur in the shock itself. 
Behind the shock the flow is governed by the scaled Eulerian equations (see Fickett 
and Davis 1979): 

p + p u x = o  

l i+p- 'px=f / (u ,T , l )  

= r (p ,  P. A) (2.4) 

where the overdot denotes the material derivative J / J t  + uJ/ax. These equations rep- 
resent conservation of mass, momentum, energy, and the species equation, respectively. 
Here, p ,  U, p and A represent the scaled density, particle velocity, pressure and mass 
fraction of B. The parameters y and k represent the polytropic index and a dimension- 
less modelling number ( k =  u f / q ,  where q is the specific heat of reaction), respectively; 
f is the body force and r is the chemical reaction rate. To obtain (2.1)-(2.4) we have 
used the scalings 

t = T,lf x = f/ ( u,so) U = E/U< 

P = p / P o ( o )  P = P / ( f i o ( o ) U f )  f = f / ( u i T o l )  

where the barred quantities are the original dimensioned quantities and T~ is a given 
chemical time scale; A is already dimensionless. The presence of the body force f in 
the governing equations is required since a non-constant density distribution requires 
an external force to maintain equilibrium ahead of the shock. However, for detonations, 
where particle velocities and accelerations are large, we assume I f 1  << u,T;', and there- 
fore we neglect the body force in (2.2) in the subsequent anaiysis of the Bow behind 
the shock. Alternatively, we could regard the reactive medium as a solidly packed 
condensed explosive with density variations caused by the packing; the small forces 
holding the components together are negligible compared with the pressure generated 
in a detonation. 
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Across the shock the Rankine-Hugoniot strong shock conditions are assumed to 
hold. In dimensionless form these conditions are 

where the subscript unity denotes the value of the quantity immediately behind the 
shock; D has been scaled by ui and po(x)  has been scaled by pO(O). The shock velocity 
D is another unknown in the problem. 

In the above formulation of the equations we have assumed that the equation of 
state of the reacting mixture behind the shock is e : p / ( (  y - 1 ) p )  - qA, where e is the 
specific internal energy. This polytropic gas equation of state is assumed to hold even 
though the material ahead of the shock may be a solid combustible material. Typical 
values of y for the gaseous products of a solid explosive are y 6 (see Fickett and 
Davis 1979). 

Our goal is to find transformations under which (Z.I)-(Z.S) are invariant and 
determine the resulting self-similar solutions. We begin with the following general 
result regarding the invariance group of the governing partial differential ‘equations 
(2.1)-(2.4). 

Proposition 2.1 (Holm and Logan 1983). The one-parameter local lie group r. under 
which (2.1)-(2.4) with f = O  are constant conformally invariant is given by 

i = e b ( t + 1 ) - l  f =  Eotb (X+l ) - l  
x = E 2 a A  p = &;O = E‘U P = &2a+cP 

and r must have the form 
ps+l 

r =- H ri, +) 
P 

where a, b and c are constants and 

and E is the group parameter. 

Remark. The similarity method is well catalogued in Bluman and Kumei (1989) or 
Rogers and Ames (1989). See also Logan (1987) for a brief introduction. 

i 
The infinitesimal generators for the x and 1 transformations above are X = ( a  + b ) ( x  + 1) 
and T =  b ( t +  1). The similarity variable s may be taken as a first integral of d x / X =  
dt/T, or 

[ = a / b .  x+l 
= ( 1  f l ) f + ’  

(2.7) 

Thus the shock path is the similarity curve s,= 1 passing through x = f = 0. So the shock 
locus is 

x = ( t +  l)f+’- 1 (2.8) 
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and the shock speed D is 

E L Woerner and J D Logan 

D = ((+ l ) ( t +  1 ) ' .  

First integrals of the characteristic system 

df  d p  du dp -_ dA 
b ( f + l )  cp nu ( 2 a + c ) p  2aA 

- _ - _  

(2.9) 

where the denominators are the corresponding generators of the group, define the 
self-similar motion. The form of the motion is 

p = ( f + l ) " R ( s )  

u=(r+ l )* i r ( s )  A = ( ~ + I ) ~ ~ A ( S )  

p = ( f + 1)2j+VP( s )  
(2.10) 

where q = c/ b. 
Now we depart from previous work and consider the variable density case. The 

jump conditions (2.10) should also be invariant under re. Hence the density relationship 
should be 

Taking J / d e  at the identity E = 1 gives, after some manipulation, 

c ~ ~ ( x ) = ( a + b ) ( x + l ) p b ( x ) .  

po (x )  = po(0 ) (x+  l)"'"+b'. (2.11) 

This differential equation for po(x )  is easily solved to get 

Consequently, ifthe jump conditions are invariant under r,, then po(x )  must necessarily 
have the form (2.11).  Because of the scalings, we get p, (O)= 1 .  

To obtain a self-similar reaction rate with an Arrhenius factor and depletion we 
adjust the parameters a, b, c. From (2 .6)  we observe that a = 1 (forcing a = 6 = 0) will 
permit the arbitrary function H to depend on p / p  (proportional to temperature) and 
A alone. Then 

j-=- H(0, A )  
P 

(2.12) 

where 0 = p / p  is the temperature. Taking 

H(0, A ) =  (1  - A )  exp(-E*/O) 

will then allow more realistic chemical kinetics than previously examined with self- 
similar solution in the constant density case. In this case ( a  = l ) ,  the shock locus 
(2.8) becomes x = f and the scaled shock velocity is D = 1 .  The similarity curves 
s = (x + I ) / (  f + 1 )  =constant are straight lines in xt space. The density distribution 
ahead of the shock is p , (x )  = (x+ 1)" and the jump conditions become 

R ( l ) = -  '+' A ( l ) = O .  
2 

ir(1) = P ( 1 )  =- 
Y + l  Y - 1  

(2.13) 
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If we make the definition U =  f i - s ,  then substitution of (2.10) into the governing 
equations (2.1)-(2.4) gives a system of ordinary differential equations for U, P, R 

q R +  UR’+ R (  U’+ 1 )  = O  (2.14) 

U( U‘+ 1 ) +  P‘ /R  = 0 (2 .15 )  

q P +  UP’ -  yPR- ’ (qR+ U R ’ )  = ( y -  l ) k P 1 - ” “ H ( P R - ’ ,  A) (2.16) 

ux= P ‘ - ~ / ? R - ~ H ( P R - ~ ,  A) (2.17) 

~ and A: 

where also 

U ( 1 )  = l - y < o  
1 + Y  

(2.18) 

and the prime denotes differentiation with respect to s, with O < s s  1 .  
We remark that the translated particle velocity U is introduced to obtain an 

autonomous system. Also, we assume q # 0; if q = 0 then c = 0 and the initial density 
would be constant, forcing H = 0. Finally, we note that the power law density also 
allows self-similar solutions in cylindrical and spherical geometries, cases we do not 
consider here since no elementary solutions have been found in these cases. 

Equations (2.14)-(2.17) can he written in normal form as 

q R  
U UA 

P[ 7 - ( y - 1 )  kP-””H] R ’ =  

P R - ’ [ q - ( y - l ) k P - ’ / “ H ]  
A 

U‘=-1+ 

U P [ k ( y  - 1 ) F ” ” H -  711 
A 

p =  

(2.19) 

(2.20) 

( 2 . 2 1 )  

P ~ - I I ? U - I R - ~ H  ( 2 . 2 2 )  

where A =  UZ--yPR-’ ,  Since U( l )<Oand A(l)<O,solutions will exist onlyforthose 
values of s where A and U are negative. We shall refer to the set of (U, P, R )  where 
A E 0 as the singular surface. Note that A = 0 is not the sonic surface since U is not. 
the particle velocity, but rather the translated particle velocity. 

the shock locus. We denote 
Before proceeding further, we note the properties of the self-similar solution along 

The following proposition is straightforward to verify. 

Proposition 2.2. For the similarity solution propagating into a medium with density 
p o ( x ) = ( x + l ) ’ ,  q # O ,  we have 
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Thus U, A, and B - p / p  are constant along the shock while p and p are increasing 
when q > O  (increasing density ahead) and p and p are decreasing when q < O  
(decreasing density ahead). 

For any H = H(PR-l, A) equations (2.19)-(2.22) can be solved numerically, subject 
to initial conditions (2.13) and (2.18) at the shock. Substitution of this result into (2.10) 
would then give a class of self-similar motions for the problem. In the following we 
examine some special cases. 

3. The case H =constant 

In the special case H = constant we can obtain a simple analytic solution; such solutions 
are rare in reactive flow problems, even in simplified cases. We take, for convenience, 
H = ( y  - I)-' so that the reaction rate r is given by 

This rate function resembles the 'internal energy' rate functions often studied in the 
constant density case (see the references in section 1) .  To simplify the problem still 
further, we choose k and q to lie on the locus q =(2/ (y+l ) ) - ' /"k Thus q > O ,  and 
(2.13) and (2.21) permit us to choose P = 2 ( y + l ) - '  for all s. Then from (2.15) we 
obtain U'+ 1 = O  which integrates to give f i ( s )  = 2 ( y + l ) - ' .  Then (2.14) becomes 

yielding 

As a consequence the species equation (2.22) may be integrated to obtain 

(3.3) 

where 

The energy equation (2.16) is now satisfied identically. We summarize this result as 
follows, where we have combined the above results with (2.10). 

Proposition 3.1. If the reaction rate is given by (3 .1)  and 7 and k related by the 
nonlinear equation 

(3.4) 
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then a self-similar solution to (2.1)-(2,5) with f - 0  is given by 

2 
( t+l)" U=- 

Y + l  Y + l  

2 p =- 

(3.5) 

for x < t. 

Remark 3.1. The solution in proposition 3.1 has the property that there always exists 
an s = s*  such that A(s*) = 1. That is, the reaction always goes to completion. This 
result follows immediately from (3.3). 

Remark 3.2. The solution (3.5) has the property that each term in the momentum 
balance equation (2.2) is identically zero; consequently, the reactive flow represented 
by this solution does not transfer momentum. The density is also constant on particle 
paths, the latter being given by x - xo = 2( f - x,)( y + I)- ' ,  where xo is the time f = 0 
location of the particle. The piston path is the particle path xo = 0. Figure 1 shows the 
spacetime diagram for this solution and in figures 2 and 3 graphs of the solution 
surfaces for p ( x ,  t )  and A ( &  1) are shown. 

We conclude this section with some general comments about the behaviour of self- 
similar reacting flows in the nonconstant density case; these are governed by (2.19)- 
(2.22) with initial data (2.13). If the condition 

k(y-l)P-"'H-?>O (3.6) 

Flgum 1. A spacetime representation of the solution (3.5) showing a typical panicle path, 
the piston path and the shock. Each panicle intersects the A = 1 locus so that the reaction 
goes to completion. 
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t .  

. 
x 

Figure 2. The density surface p = p ( x ,  1 )  for the solution (3.5) with 7 = y = 2. The increase 
in density ahead of the shock is quadratic in 1. The solution ends when the reaction is 
complete ( h = l ) .  

t 

0 

Figure 3. The progress variable surface A = A(x, 1 )  for the solution (3.5) with 7 = y =2. 

holds, then (2.21) shows P is decreasing behind the shock. We always have H > 0, 
and therefore 1) < O  guarantees (3.6). Further, (3.6) and (2.20) imply fi decreases 
behind the shock. Similarly, if (3.6) fails then P and fi increase behind the shock. 
Thus, for self-similar solutions with density variations po(x)  = ( l+x)?,  9 #0, ahead 
of the shock, along similarity curves s = constant where (3.6) holds, fluid particles are 
decelerating; and, along those where (3.6) fails to hold, fluid particles are accelerating. 
As a consequence, if a rate function contains a depletion factor 1 - A  and if the reaction 
goes to completion, then H = 0 when A = 1. So, (3.6) is equivalent to 9 < 0. On the 
other hand, if 9 > 0, i.e. if a detonation is propagating into a medium of increasing 
density, and if the reaction rate has a depletion factor, then as A +  1 the flow must be 
accelerating. Finally, noting that 

x+l irfi, irru 
U = u,+uu, = -- ut+-=- 

1 + 1  f + l  f + l  
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we observe f i t< 0 implies U > 0 (since U <  0); therefore the sign of 9 relates to the 
acceleration and deceleration of the fluid particles in a direct way. 

4. The decreasing density case (9  < 0) 

We now consider (2.14)-(2.17) in the case that 1) = -1,  or p o ( x )  = (x+l)- ' .  Then (2.14) 
integrates to 

UR = -1 (4.1) 

and (2.15) becomes 

R 

which integrates to P+ R - ' - s  = constant. Again, from the initial conditions (2.13) 
and (2.18) we find the constant of integration to be zero, and therefore 

P = s-  R-'. (4.2) 

Equations (2.16) and (2.17) can then be written 

( y  - 1)s -( y +  1) 

A'=-P2H. 

Next we integrate (4.3) to find 

2 
e.;+(?) R- 2 - ysR-' = (1 - y)kA 

(4.3) 

(4.4) 

where the constant of integration is zero from the initial conditions. Therefore, in terms 
of Ab), 

R = ( y  - I)[ys -Js2 -2 (  y2-  1)kAI-l 

fi = P = ( y +  l ) - ' [s+Js2-2(  y2-  l)kA]. 

(4.5) 

(4.6) 

(4.7) 
Before (4.4) can be integrated to determine A(s), a rate function H must be specified. 
It appears that there is no simple choice for H which would allow (4.4) to be integrated 
in closed form. (Note that the solution (4.5)-(4.7) coupled with (4.4) is reminiscent 
of the classical, steady ZND solution for the constant density case; however, there is 
no obvious transformation that relates the two.) 

Even though (4.4) cannot be integrated in closed form, it is possible to deduce 
some conclusions on the size of A and hence upon the extent of completion of the 
reaction. From (4.4), 

U = ( y +  1)-'[-ys+Js2-2( y2-  I)kA] 

A(s) = - HP2(u) d u  s < l .  I: 
Since q < O ,  the pressure P is decreasing (see the discussion at the end of section 3) 
and so its maximum value is attained on [s, 11 at s = 1 .  Therefore 

(4.8) 
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where ~ ~ H ~ ~ ~ , s  denotes the supremum norm on [s, 11. When H has the form of the 
product of an Arrhenius factor with a depletion factor, 

E L Woemer and J D Logan 

H ( 1  - A )  exp(-E*/O) E * > O  (4.9) 
we see that ~ ~ H ~ ~ ~ ~ s < l  f o r 0 S s S  1 and therefore A ( ~ ) i 2 ( y + l ) ~ ~ ( l - s ) < 2 ( y + l ) - ~ .  
Since y >  1, we conclude that the reaction will not go to completion for the special 
case (4.9). 

forms of H lies in the existence of a singular locus for the differential equations 
(2.19)-(2.22) governing the self-similar flow. We have, for the solution (4.5)-(4.7), 

The mathema!ica! reason that the reaction docs not go to cnmp!e!ion fer sn=..e 

since LTt - p  is "ever zem, !hc sing=!&y ecccrs in (2.!9)-(?.22) when 

s2 -2 (  y -  l)kA(s) = 0 

which may have solutions s0e(O, l) ,  depending on H. Figure 4 shows a spacetime 
diagram for an H of the form (4.9). From (4.5)-(4.7) we observe that P, R and U 
(and hence fi) are finite at so even though their derivatives become infinite. In particular, 
we see from (4.7) that f i ( s o )  > 0; i.e. at the singularity the flow velocity is positive. We 
remark that this result is in contrast to the results for constant density in Logan and 
Woerner (1989); there it was found that a singularity in the flow developed only for 
decelerating pistons with negative velocity. In the next section we shall give a necessary 
condition for the existence of a singularity in terms of the piston motion and therefore 
pose a physical reason for some reactions going to completion, and others not. 

Fiiurc 4. Spacetime diagram showing the shock x = I and the decelerating piston in the 
case r=p2(l-A)exp(-E*/R)where E*=0.222, y = 2 ,  k = l ,  q=-l.TheC+charactcns- 
tics have envelope E = 0.385 (dashed line) and the reaction does not go to completion. This 
solution was computed numerically from (4.4)-(4.7). 
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5. Nature of the singular points 

In this section we give some insight into the nature of the self-similar flow when the 
appearance of a singular point occurs in (2.14)-(2.17). Singular lines, also termed limit 
lines, are not uncommon in gas-dynamic theory (see von Mises 1958). 

The governing equations (2.1)-(2.3) can be written in characteristic form in the 
usual way (see, for example, Whitham 1974): 

and 

dx (2) * P C ( $ )  = ( y - l ) k p r  d t  
o n - = u + c  

dp dp -- c 2 - =  k ( y -  1 ) p r  
df dt 

dx dh 
dt dt 

r on - = U  -= 

dx 
o n - = u  

d t  

(5.3) 

where c2=  ypp-'. In terms of the similarity variables, (5.1) becomes 

q P +  P'( U * C ) *  RC( U'+l)( U *  C )  k ( y -  l)P""'H(fl, A) (5.4) 

where C2 = yPR-'. On the singular surface A = U 2 -  C 2  = 0, equation (5.4) becomes 

(5.5) q = (7- l)kP-""H(B, A). 

Therefore, if a trajectory of (2.19)-(2.22) approaches the singular surface A = O  for 
some s = so< 1, then (5.5) must hold in the limit s + s; in order to have a valid solution 
at that point. Otherwise, the trajectory cannot enter the singular surface and the solution 
would have to terminate at s = so. whether or not the reaction is complete. Condition 
(5.5) relates the density index q to the rate factor H(0,A).  If q < O  then (5.5) can 
never hold; thus in media with decreasing density ahead of the shock, any trajectory 
entering the singular surface must terminate there. 

If (5.5) fails to hold so that the solution must end on the singular surface, then it 
is the positive characteristic equation (with the plus sign in (5.4)) that produces the 
singularity since U < 0 and C > 0. In this case (5.1) shows that the C+ characteristics 
have slope dx /d t=  C + C =  U +  C + s ,  and so dx/d t=s ,  at the singular point. But 
this is precisely the slope ofthe similarity curve s(x, t )  = so. Consequently, the similarity 
curve s =so in xt space is an envelope of the positive characteristics. An example of 
this phenomenon is illustrated in figure 4. 

The governing equations (2.19)-(2.22) also exhibit singular behaviour at U = 
6 - s = 0. In this case we can show that it is the behaviour of the particle paths near 
a critical similarity curve that causes the singularity. If (5.2) is written in terms of the 
similarity solution we obtain 

q P +  U P -  C 2 ( q R +  UR') k ( y -  l)P1-l'"H. (5.6) 

kP- 'H( f l ,A)=-q .  (5.7) 

When U=O we have 

Therefore, if a trajectory of (2.19)-(2.22) approaches the surface U=O for some 
s = s,,< 1, then (5.7) must hold as s +  s: in order to have a valid solution at that point; 
otherwise the solution must terminate at so. We note that if the solution becomes 
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singular at s = so and enters the surface U = 0, then the particle paths have slope 
dx/d t  = fi = U +  s = so, which is the same as the slope of the similarity curve s = so. 
Thus the similarity curve s = so in xt space forms an envelope of the particle paths. 
The evolution of the chemical progress variable A is determined by the species equation 
(2.22). An example of such a singular flow is shown in figure 5. 

The question of whether the singular surface A = O  appears in a given self-similar 
flow can be partially answered in terms of the piston motion. We prove the following. 

E L Woemer and I D  Logan 

Figure 5. The piston path (not drawn to scale) in the case k = 3 ,  ~ = l ,  y = 2  with the 
reaction rate H given by (4.9) with E'= 0.222. The reaction goes to completion ( A  = 1) as 
the particle paths approach the line s =0.465, which is an envelope of the particle paths. 

Proposition 5.1. A necessary condition that A(so) = 0, so < 1, for the self-similar solution 
(2.1)-(2.5) with p o ( x ) = ( l + x ) ' ,  7 ZO, is that the piston decelerate on some interval 
of time. 

Proof: First we note that by definition 

A' = 2 uu'- . /P'JR + ./PR'/ R=. 

Using the mass and momentum equations (2.14) and (2.15), we may eliminate R' to 
obtain 

(5 .8 )  

By way of contradiction, assume that the piston is everywhere accelerating, that is, 

~pis ton 'o .  

Since the solution is self-similar, every particle is likewise accelerating. Thus U > 0 
everywhere. Then by the remarks at the end of section 3, we have 

f i , < O  U'>  0 P'<O P , R > O  u<o. 
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From (3.6) we also have q > 0 as a necessary condition for accelerating fluid particles. 
Therefore, the first two terms on the right-hand side of (5.8) are positive. Further, since 
Y > L  

P 
U2- ->  A. 

R 

Let so be the first value of s smaller than one where A(s,) = 0; then ( U 2  - P /  R)(s , )  > 0 
and from (5 .8 )  we must have A(s,) > 0. But this contradicts the fact that A( 1) < 0 and 

U 

The detonation presented in proposition 3.1 always goes to completion because the 
piston is never decelerating. The converse of proposition 5.1 is false; sufficient condi- 
tions must involve k and form of H, as well as the action of the piston. 

We may gain further physical insight into the existence of the sin@a,' li2e by 
transforming the solution (4.4)-(4.7) in the case q = -1 into quantities A, R, U and 
# defined by 

A(s)<O for sn<s < 1, and the proof is complete. 

A R = s R =  Y + l  = s-21\ 
y - 4 1  -2( y 2 -  l ) k i  

(5.7) 

(5.8) 

In these variables the solution resembles the classical ZND steady solution (see Fickett 
and Davis (1979)). The quantity 2 ( y 2 -  1)k under the radical in (5.7)-(5.8) is analogous 
to the overdrive parameter ( D j / D ) 2  in the ZND solution, where 4. is the Chapman- 
Jouget velocity and D is the detonation velocity. If 2 ( y 2 - l ) k >  1, which is analogous 
to D < D j  (underdriven case), then the reaction will not go to completion since the 
quantity under the radical in (5.7) and (5.8) would become negative before A = 1. 
Thus, in the solution (4.4)-(4.7) there is a correspondence between being underdriven 
and having a trajectory reach the singular surface, the latter leading to an incomplete 
reaction. 

This observation is consistent with the results obtained in Logan and Woerner 
(1989) in the constant density case. There, the appearance of a limit line was accom- 
panied by a piston that was decelerating infinitely fast (essentially becoming a massless 
piston). Thus, the limit line appeared when the flow was strongly underdriven and the 
reaction did not go to completion. Physically, one could infer that the piston behind 
the flow is pulled backwards so rapidly that the resulting rarefaction causes the chemical 
reaction to end before it goes to completion. 

6. Discussion and examples 

The trajectories of the self-similar system (2.19)-(2.22) lie in a four-dimensional phase 
space; there are three adjustable parameters (y .  k and q )  plus an arbitrary reaction 
rate function If(@, A). With this high degree of generality it is difficult to make specific 
assertions regarding the behaviour of the phase trajectories. In special cases, however, 
some conclusions can be drawn. For example, in section 3 we examined an exact 
solution when H =constant and there was a nonlinear, simplifying relationship 
(equation (3.4)) between k and 7. This solution had the property that the chemical 
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reaction always goes to completion. On the other hand, the reaction for the special 
solution in section 4 with q = - 1  and H given by (4.9) never goes to completion 
because of the appearance of the singularity in the flow. 

One reason for examining self-similar detonations in a medium with variable density 
is that solutions can be obtained when the rate law contains Arrhenius and depletion 
factors. In the case studies for detonations in constant density media, the invariance 
hypothesis forced the rate law to be of the form r = p s f ( p ,  A l p ) ,  thus excluding the 
physically relevant Arrhenius and depletion factors; in these studies it was not clear 
if the mechanism producing singular lines in the flow was the rate law, often taken to 
be a simple power law r = p / p  = 8 (see Logan and Woerner 1989). Therefore, rather 
than undertake an exhaustive numerical study and examine large classes of rate laws 
and parameter ranges, we limit the discussion to rate laws of the form (4.9) with the 
shock propagating into a medium of increasing density (q = 1); we then examine the 
behaviour of the trajectories for different values of k the ratio of the specific chemical 
energy release q to the initial piston velocity uf. 

Figure 6 illustrates trajectories in RUP-phase space when q = 1 and H is given by 
(4.9) with E* = 0.222 and y = 2. The singular surface A =  U'- yP/R = 0 is shown as 
a sheet varying parabolically in the U direction and linearly in the R direction. The 
shock is represented as a point ( (y+ l ) / (y - l ) ,  (1 -y ) / ( l+y) ,  2 / (y+ l ) )  which lies 
above the surface A = 0. Numerical calculations indicate three possibilities. Fork < k' = 
4.430 316 75 the trajectory enters the singular surface U = 0 and the reaction goes to 
completion, as may be expected from (2.22) where U appears in the denominator on 

E L Woerner and J D Logan 

I -U 

I 

R 

Figure 6. Trajectories of (2.19)-(2.22) in RUP-space when H is given by (4.9) with 
E *  = 0.222 for different values of 7 and k. The point representing the shock lies above the 
A = 0 surface. 
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the right-hand side. For k >  k* the trajectory enters the singular surface A = O  before 
the reaction is complete. For k = k* the reaction is complete just at the singular surface 
A = 0. Three such trajectories (for k = 3, k* and 6) are shown in figure 6. In this special 
case, one important conclusion can be drawn from proposition 5.1; namely, a necessary 
condition for the chemical reaction not to go to completion is that the piston decelerate 
on some interval of time. (Thus, the detonation given in proposition 3.1 always goes 
to completion because the piston is never decelerating.) Figure 7 shows the calculated 
values of the reaction progress variable h as a function of 1 - s for k = 1 and k = 3; 
we note the different shapes of the curves. The piston path for k = 3 is depicted in 
figure 5.  

0.385 0.465 0.725 1 - (1 

Figure 7. The reaction progress variable A graphed against 1-3  (making the shock at the 
origin) for different values of k and 'I with H given by (4.9) with E'=O.ZZZ. The graph 
for q = -1  is not drawn to correct vertical scale. 

Figure 6 also shows a typical trajectory for a decreasing medium (1) = -1). In this 
case the trajectory intersects the singular surface A = O  before the reaction is complete. 
The particle velocity is continuously decreasing along the trajectory (see figure 4); the 
reaction progress variable curve is shown in figure 7. 

The numerical results in the case 7 = 1 and H given by (4.9) are consistent with 
the results of the constant density case discussed in Logan and Woerner (1989). For 
small values of the modelling parameter k there is a smooth solution behind the shock 
and the reaction goes to completion. As k increases, that is, as more chemical energy 
is released with respect to the mechanical energy uf, there is a value ( k =  k*) beyond 
which the flow is characterized by the presence of a singular surface and an incomplete 
chemical reaction. We have shown that if the reaction is incomplete, that is, if a 
trajectory intersects the singular surface, then necessarily the driving piston must 
decelerate on some interval of time. Again, this result is consistent with the constant 
density case where it was observed (but not proved) that the presence of a limit line 
in the flow was associated with a rapidly decelerating piston. Thus, there are not 
substantial changes in a medium of increasing density from the constant density case; 
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but in the non-constant case the kinetics are not restricted and it appears that the 
presence of limit lines is not an artifact of over-simplified rate laws, like the power 
laws used by the authors in the constant density case (Logan and Woerner 1989). 

E L Woerner and J D Logan 
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